Section 4.2

Definition of Trigonometric Functions

Let t be a real number and let (x, y) be the point on the unit circle corresponding to t.

$$
\begin{array}{cc}
\sin t=y \quad \cos t=x \quad \tan t=\frac{y}{x}, \quad x \neq 0 \\
\csc t=\frac{1}{y}, y \neq 0, \quad \sec t=\frac{1}{x}, x \neq 0, \quad \cot t=\frac{x}{y}, y \neq 0
\end{array}
$$

Periodic Function

A function t is periodic if there exists a positive real number c such that $f(t+c)=f(t)$ for all t in the domain of f. The smallest number c for which f is periodic is called the period of f.

Even and Odd Trigonometric Functions

The cosine and secant functions are even.

$$
\cos (-t)=\cos t, \quad \sec (-t)=\sec t
$$

The sine, cosecant, tangent, and cotangent functions are odd.

$$
\sin (-t)=-\sin t, \quad \tan (-t)=-\tan t, \quad \csc (-t)=-\csc t, \quad \cot (-t)=-\cot t
$$

Problem 1. Determine the exact values of the six trigonometric functions of the angle θ.
a) C_{1}

b) C_{2}

Problem 2. Evaluate the six trigonometric functions of the real number.
a) $t=\frac{\pi}{4}$
b) $t=-\frac{\pi}{6}$
c) $t=-\frac{3 \pi}{4}$
d) $t=\frac{7 \pi}{6}$

Problem 3. Evaluate the trigonometric function using its period as an aid.
a) $\cos 7 \pi$
b) $\sin \frac{15 \pi}{6}$
c) $\cos \left(-\frac{13 \pi}{4}\right)$

Problem 4. Use the value of the trigonometric function to evaluate the indicated functions.
a) $\cos (t)=\frac{2}{3}, \cos (-t), \sec (-t)$
b) $\sin (-t)=\frac{2}{5}, \sin t, \csc t$

